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A quantitative analogy between fully developed turbulent flows in curved pipes and 
orthogonally rotating pipes will be described through similarity arguments, the use of 
experimental data and computational results. A pair of similarity parameters will be 
derived for each turbulent flow, so that they have the same dynamical meaning as those 
of laminar flows. When the second parameter for each flow is large enough, it will be 
shown that friction factors, as well as heat transfer rates, of the two flows coincide for 
equal values of the fundamental parameters. Computed contours of velocity and 
temperature will also reveal strong similarities between the two flows. 

1. Introduction 
The secondary flow caused by the Coriolis force in a straight pipe rotating about an 

axis perpendicular to the pipe axis is similar to that caused by a centrifugal force in a 
stationary curved pipe. A quantitative analogy between these two flows was drawn for 
fully developed laminar flows in a previous paper (Ishigaki 1994). It will be shown in 
this paper that the analogy between these two pipe flows is also valid for turbulent flow. 

These two turbulent pipe flows have been investigated separately. Fully developed 
turbulent flows in curved pipes have been studied experimentally by White (1929), Ito 
(1959), Seban & McLaughlin (1963), Roger & Mayhew (1964), theoretically by Mori 
& Nakayama (1967), and computationally by Patankar, Pratap & Spalding (1975). 
There also have been many studies on turbulent flows in curved ducts of non-circular 
cross-sections and on developing turbulent flows (see reviews by Nandakumar & 
Masliyah 1986 and Ito 1987). 

Fully developed turbulent flows in orthogonally rotating ducts have been studied 
experimentally by Trefethen (1957), Ito & Nanbu (1971), theoretically by Mori, 
Fukada & Nakayama (1971), and computationally by Iacovides & Launder (1991) for 
rectangular duct flow. A recent survey of the literature on turbulent flows in 
orthogonally rotating pipes is given in Tehriwal (1994). 

It has sometimes been said in qualitative terms that there is an analogy between 
turbulent flows in stationary curved pipes and in orthogonally rotating straight pipes. 
In a discussion on Ito’s paper, Trefethen (1959) noted that the friction factors for 
curved pipe flow presented by Ito were approximately similar to those for orthogonally 
rotating pipe flow, which had measured previously (Trefethen 1957), but he gave 
no theoretical explanation. Another analogy, between the turbulent parameters 
describing the effect of buoyancy and describing the effect of streamline curvature or 
rotation on a turbulent lengthscale, such as mixing length, is also well-known 
(Bradshaw 1969). This analogy, however, focused only on the turbulent structure in the 
general flow situation, including external flows, and it did not consider the secondary 
flows that arise directly from the body force in mean flows. Nor did the authors who 
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studied both of these flows (It0 1959; Ito & Nanbu 1971 and Mori & Nakayama 1967; 
Mori et al. 1971, and others) mention any relationships between them. Trefethen's 
discussion on Ito's paper seems to be the only one that directs explicit attention to the 
analogy between two turbulent duct flows with secondary flows. 

Each of the turbulent flows under consideration is generally governed by two 
parameters. In order to show an analogy between two different flows, it is essential to 
use proper similarity parameters (dimensionless numbers). It is also essential, as 
described in the previous paper (Ishigaki 1994), to have a situation where only one of 
the two parameters governs the flow characteristics in each flow. In laminar flows 
through curved pipes, the pair of similarity parameters are the Dean number 
KLc = Re/h1I2 and the curvature ratio h = R/d, where Re = w, d / v  is the Reynolds 
number in which w, is the mean velocity of flow, d the diameter of the pipe, v the fluid 
kinematic viscosity, and R is the mean radius of curvature of the pipe. The parameters 
in laminar rotating pipe flow are KLR = Re/Ro1I2 and the Rossby number 
Ro = w,/Qd, where 52 is the angular velocity of rotation. KLR and Ro in rotating pipe 
flow correspond dynamically to KLc and h in curved pipe flow respectively. These sets 
have the important property that flow characteristics become independent of h or Ro 
when h or Ro is large enough ('asymptotic invariance property' of the second 
parameter). Then KLc or KLR is the sole fundamental parameter that determines the 
dynamical behaviour of each flow. Only then is there an analogy between these laminar 
flows (Ishigaki 1994). 

The purpose of this paper is to introduce the similarity parameters for each turbulent 
flow corresponding to those for laminar flow, and to reveal the analogy between them; 
and these are found to be KTc = Re1I4/h1l2 and KTR = Re114/Ro112. The second 
parameters will be the same as those for laminar flows, i.e. h and Ro. When h and Ro 
are large enough, KTc and KTR are the sole parameters. Experimental data will show 
that the friction factors and heat transfer rates for the two flows are the same when 
KTc = KTR. Computed contours of velocity and temperature will also reveal the 
similarity between the two flows. 

2. Similarity parameters 
On reviewing the literature on the turbulent flows under consideration, including 

flows in rectangular ducts and developing flows, it is found that most authors used the 
Reynolds number Re to characterize the flows. For example, Patankar et al. (1975) 
used Re and h to represent the computational results for curved pipe flow. Iacovides 
& Launder (1991) stated, without any explanation, that the two parameters 
characterizing the turbulent flow in a rotating duct were Re and 1/Ro. The Reynolds 
number, however, may not be a similarity parameter for these flows, since it includes 
neither the effect of curvature nor the effect of rotation. 

Ito (1959) used a dimensionless parameter Re(d/2R)' to propose a friction formula 
in curved pipes, and Ito & Nanbu (1971) used Kt = Ri/Re and R, to correlate the 
experimental data on rotating pipe flow, where R, = 52d2/v is the rotational Reynolds 
number. In both papers, these parameters were derived by an integral method of 
boundary layer analysis, but neither the physical meaning of the parameters nor the 
connection between them was mentioned. 

In the laminar flow of Ishigaki (1994), governing parameters were derived by 
applying an appropriate scaling of variables to the Navier-Stokes equations. In 
turbulent flows, however, the same approach cannot be taken, because unknown 
turbulent stresses appear in the Reynolds-averaged Navier-Stokes equations. We shall 
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derive the turbulent parameters so that they have the same dynamical meaning as those 
of laminar flows. 

For laminar flow in curved pipes, the Dean number KLc is the square root of the 
product of (inertia force/viscous force) and (centrifugal force/viscous force). The 
curvature ratio h is equal to (inertia force/centrifugal force). A pair of laminar 
parameters, KLR and Ro, in orthogonally rotating pipe flow is obtained by replacing 
the centrifugal force in KLc and h with the Coriolis force. 

We look for the parameters that have the same dynamical meaning as those for 
laminar flows. The inertia force 4 - pwh/d and the centrifugal force I$ - p w L / R  are 
the same as in laminar flows; only the viscous force differs. In turbulent flow, viscous 
forces are restricted to an inner wall layer, where the total stress is approximately 
constant for a moderate pressure gradient and equal to the wall shear stress 7,. As 7, 
can be estimated approximately by using the Blasius formula or, equivalently, the one- 
seventh law of the velocity profile (Schlichting 1979), the viscous force & can be 
estimated to be & N 7,/d - pwZ4 v1/4d-5/4 as a first approximation. Then we get 
KTc = (4I$)ll2/& = Re1/4/h1i2 as a turbulent parameter in curved pipe flow. If F, is 
replaced with the Coriolis force F, N pQw,, we have KTR = Re1/4/Ro1/2 as a turbulent 
parameter in rotating pipe flow. 

The second parameter of each laminar flow, h and Ro, is also valid for the 
corresponding turbulent flow, since the inertia force and body force have the same 
forms as in laminar flows. Therefore, analogous to laminar flows, KTc or KTR is the 
sole governing parameter in each flow when h or Ro is large enough. The analogy 
between turbulent flows in curved pipes and rotating pipes can only be expected in this 
case. 

Ito’s parameter for curved pipe flow corresponds to KTc4, on replacing the radius 
with the diameter of the pipe. The parameter Kt of Ito & Nanbu for rotating pipe flow 
corresponds with KTR4, but the combination of Kt and R, does not have the 
‘asymptotic invariance property’. 

It is useful to comment here that the parameters introduced here may also be valid 
for developing turbulent flows, if we make use of appropriate dimensionless axial 
distances. In a study of developing laminar flows, Ishigaki (1993) introduced 
dimensionless axial distances Z,  = z/dAlJ2 for curved pipe flow and Z, = z/dRolJ2 for 
rotating pipe flow. As these distances include no viscous terms, they may also be valid 
for turbulent flows. Therefore, together with 2, or Z,, pairs of parameters introduced 
here also characterize turbulent developing flows. 

3. Verification and discussion 
The similarity in each flow and of the analogy between two flows are verified by 

using available experimental data, supplemented by computational results obtained 
with a standard k - 6 turbulence model because of a lack of experimental data on flow 
patterns. An outline of the computations is given in the Appendix. For practical 
purposes, analogy formulae common to both flows are given for the fiction factor and 
for the heat transfer rate. 

3.1. Friction factor 
Experimental results for the friction factors of the two flows are taken from Ito (1959) 
for curved pipe flow and from Ito & Nanbu (1971) for rotating pipe flow, as their data 
are the most comprehensive and precise. The data were obtained for various values of 
h or Ro larger than about 8. These results, modified by using KTc and KTR respectively, 
are shown in figure 1, together with an empirical formula by Blasius for non-rotating 
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FIGURE 1 .  Friction factors. Present computation (-, curved pipe flow; -----, rotating pipe flow); 
. . . . ., Blasius formula for non-rotating straight pipe flow; 0, experimental formula from Ito (1959) 
(curved flow); 0,  experimental formula from Ito & Nanbu (1971) (rotating pipe flow). 

KTC, KTR 

FIGURE 2. Mean Nusselt numbers for a Prandtl number of 0.71. Present computations (-, curved 
pipe flow; -----, rotating pipe flow); . . . . ., Kays & Crawford (1980) formula for non-rotating straight 
pipe flow; 0, A, experimental data from Mori & Nakayama (1967) for curved pipe flow ( A  = 9.35 
and 20); 0,  A, experimental data from Mori et al. (1971) for rotating pipe flow (Ro = 10 and 100). 
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FIGURE 3. Contours of secondary stream function $, axial velocity and temperature (Pr = 0.71) 
(upper half: curved pipe flow, lower half: rotating pipe flow). 

straight pipe flow. Computational results using a k-t. model are also shown in the 
figure. 

Figure 1 shows that: (i) experimental data for various values of h or Ro show the 
similarity of KTc or KTR in each flow, (ii) the two sets of experimental results coincide 
over the whole range of experiments, (iii) the maximum increase of the friction factor 
from the Blasius formula is less than 30 % at KT = 6 ,  (iv) the computational results for 
the two flows coincide with each other, but underpredict at larger KT.  

The increase of the friction factors due to the body force is much smaller in turbulent 
flows than in laminar flows. The increase from turbulent flow without body force may 
have two causes: the secondary flow and the change of turbulence structure. The 
secondary flow is a direct effect of body force on the mean flow, since it originates from 
the body-force terms in the mean flow equations. The change of turbulence structure 
is an indirect effect, since it originates from the body-force-related terms in the 
turbulent stress equations, and it affects the mean flow through turbulent stresses. The 
major cause of the increase in the friction factors seems to be the secondary flows. The 
effect of a change of turbulent structure due to body force is not considered in the 
computation. The underprediction in the computation may come from this effect. 
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As the two sets of experimental results coincide, either can be used to estimate both 
flows. Ito’s formula for curved pipe flows, which has a wider application range, can be 
rewritten for the Fanning friction factor f = ;i,/(!jpwk), where is a peripheral 
average wall friction, as 

fktI2 = 0.005 13 + 0.0760/KT, (1) 

where KT and K, represent KTc and h for curved pipe flows, and KTR and R, for 
orthogonally rotating pipe flow. The range of application is 0.6 < KT < 6 and K, > 8. 
This is the analogy formula for both turbulent flows. 

3.2. Heat transfer rate 
It is assumed that the analogy is also valid for heat transfer for fixed values of the 
Prandtl number Pr. We shall discuss the mean Nusselt number Nu = qw d/[(Tw - T,)k] 
with a Prandtl number of 0.71, where qw is heat flux at the wall, T, the wall 
temperature, the fluid bulk temperature and k the thermal conductivity of the fluid. 
The thermal boundary condition of the pipe is an axially constant wall heat flux with 
a peripherally constant wall temperature, a typical condition for metal pipes. Figure 2 
includes experimental data and computational results for both flows, as well as an 
empirical formula by Kays & Crawford (1980) for non-rotating straight pipe flow for 
reference. Experimental data for air are taken from Mori & Nakayama (1967) for 
curved pipe flow and from Mori et al. (1971) for rotating pipe flow. The experimental 
data of the latter were given in terms of their own complicated composite parameter, 
without enough information to evaluate Ro. Therefore, KTR is estimated by assuming 
two values of Ro = 10 and 100, and these data are shown by two symbols which deviate 
from the computational curve only slightly. Comparing with the Kays-Crawford 
formula, the maximum increase of Nu due to body force is about 20% at KT = 6. 

The computational results for these two flows coincide with each other, and 
experimental data for the two flows agree quite well with the computations. The 
computational results for the two flows can be expressed by 

Nu/K;l5 = 0.0192K$30, (2) 

where KT and K, as in (1). This is the analogy formula for the mean Nusselt number 
for both turbulent flows when Pr = 0.71. 

3.3. Flow patterns 
As it is important to see how the two flow patterns are similar for values of KTc = KTR 
= KT, computed contours for the non-dimensional secondary streamline, axial 
velocity and temperature (Pr = 0.71) are shown in figure 3 for three values of KT.  The 
upper half of the pipe cross-section shows curved pipe flow, while the lower half shows 
rotating pipe flow. For all three values of KT,  the contours of the two flows are very 
similar, particularly for secondary streamlines. For curved pipe flow, comparisons 
between contours computed with a standard k -  c model and contours measured by 
Rowe (1966) were made by Patankar et al. (1975), which showed a fairly good 
agreement (see also Rodi 1984). 

4. Conclusion 
Following a previous paper which had shown an analogy between laminar flows, the 

quantitative analogy between fully developed turbulent flows in curved pipes and in 
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FIGURE 4. Configuration of (a) curved pipe flow, (b) orthogonally rotating pipe flow. 

orthogonally rotating pipes has been demonstrated through similarity arguments, use 
of experimental data and computational results. Dimensionless governing parameters 
KTc and KTR having the same dynamical meaning as those for laminar flows were 
introduced. The second parameters h and Ro were the same as in laminar flows. For 
h and Ro large enough, KTc and KTTR became the sole governing parameters in their 
respective flows, so the analogy between the two turbulent flows became evident. With 
the new scalings, experimental data showed that the friction factor and the mean 
Nussel number of the two flows coincided respectively, when KTc = KTR. Contours of 
primary and secondary velocity, as well as of temperature for Pr = 0.71, were shown 
to be similar for a wide range of the parameters. 

Appendix. Outline of the computation 
In curved pipe flow, it is assumed in the equations that h is large enough for its effect 

to be negligible. As shown in figures 4(a) and 4(b), cylindrical polar coordinates 
( r ,  8, z )  fixed to a pipe are taken for both flows with corresponding velocities (V,, V,, K). 
A standard k--6 model of turbulence with a wall function is employed in the 
computation. In the fully developed region, the equations of continuity, motion, 
temperature T, turbulent energy k and its dissipation rate -6 are written as follows. 

The equation of continuity is 

a a 
ar ae -(rV,)+- V, = 0. 

Reynolds equations can be written, after standard approximations, in the form 

where 4 stands for V,, V,, V,, T, k or 6.  The diffusion coefficient li;, pressure-gradient 
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term P+, body-force term 6 and source term S4 for both flows are given in table 1. The 
p* in rotating pipe flow is the reduced pressure given by 

p* =p--;pS22(r2COSze+Z”. (A 3) 

The assumption that Ro is large enough means that the 6 term in the V,  equation for 
rotating pipe flow is small enough. The model constants in the k- and €-equations have 
standard values, as shown in table 1. The wall function to give boundary conditions at 
near-wall grids is described in Launder & Spalding (1974), and a detailed description 
of the method is given in Patankar et al. (1975). 

The numerical scheme employed to solve these equations is based on the finite- 
volume approach, which is an adaptation of that of Patankar (1980). The 
computational grid covers only a semicircular sector because of the symmetry of the 
flow with respect to the x-axis. The grid density employed is 30 in both r- and 6- 
directions. In the r-direction, the location of the near-wall grids are specified so as to 
satisfy the condition 30 < y+ (= yw u,/v) < 100, where yw is the distance from the wall 
and u, = ( ~ , / p ) ’ ’ ~  is the friction velocity. 

The convergence criterion is specified with all the normalized residual errors for 
dependent variables to be less than Computations for various values of KTc or 
KTR are made by fixing Re at lo5 and changing h or Ro while keeping A, Ro > 8. 
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